

Formulario de Aprobación Curso de Posgrado 2013

Asignatura: APRENDIZAJE AUTOMATICO Y APLICACIONES

(Si el nombre contiene siglas deberán ser aclaradas)

Profesor de la asignatura ¹: Prof. Dr. Gonzalo Perera, GR 5, IMERL

(título, nombre, grado o cargo, Instituto o Institución)

Profesor Responsable Local 1:

(título, nombre, grado, Instituto)

Otros docentes de la Facultad:

(título, nombre, grado, Instituto)

Docentes fuera de Facultad: Dra. Carolina Crisci (FCIEN)

(título, nombre, cargo, Institución, país)

Instituto ó Unidad: Instituto de Matemática y Estadística "Prof. Ing. Rafael Laguardia"

Departamento ó Area:

¹ Agregar CV si el curso se dicta por primera vez (si bien este curso ha sido dictado varias veces, se adjunta CV)

(Si el profesor de la asignatura no es docente de la Facultad se deberá designar un responsable local)

Fecha de inicio y finalización: 1/04/2013-10/07/2013

Horario y Salón:

Horas Presenciales: 62

(se deberán discriminar las mismas en el ítem Metodología de enseñanza)

Nº de Créditos: 10

(de acuerdo a la definición de la UdelaR, un crédito equivale a 15 horas de dedicación del estudiante según se detalla en el ítem metodología de la enseñanza)

Público objetivo y Cupos:

Estudiantes de Posgrado de Ingeniería o Ciencias con interés en "Machine Learning" y sus aplicaciones.

(si corresponde, se indicará el número de plazas, mínimo y máximo y los criterios de selección. Asímismo, se adjuntará en nota aparte los fundamentos de los cupos propuestos. Si no existe indicación particular para el cupo máximo, el criterio general será el orden de inscripción en el Depto. de Posgrado, hasta completar el cupo asignado)

Objetivos: Familiarizar con la problemática general de Machina Learning (Aprendizaje Automático) y adquirir manejo eficaz de las técnicas mas actuales al respecto, visualizándolas en aplicaciones recientes en: QoS en transmisión de datos, Ecología funcional, Redes Sociales.

Conocimientos previos exigidos: PROBABILIDAD Y ESTADISTICA (nivel de grado), habilidades de programación y trabajo en bases de datos grandes.

Conocimientos previos recomendados: Curso de Modelos Lineales o Análisis de Datos Multivariados.

Metodología de enseñanza:

(comprende una descripción de las horas dedicadas por el estudiante a la asignatura y su distribución en horas presenciales -de clase práctica, teórico, laboratorio, consulta, etc.- y no presenciales de trabajo personal del estudiante)

Facultad de Ingeniería Comisión Académica de Posgrado

- Horas clase (teórico): 48 horas de teórico-práctico
- Horas clase (práctico): no corresponde
- Horas clase (laboratorio): no corresponde
- Horas consulta: 12
- Horas evaluación: 2
 - Subtotal horas presenciales: 62
- Horas estudio: 50
- Horas resolución ejercicios/prácticos: 12
- Horas proyecto final/monografía: 20
 - Total de horas de dedicación del estudiante: 144

Forma de evaluación: Trabajo o monografía más defensa oral

Temario:

- 1 Introduccion general. problemas clásicos.
- 2. Aprendizaje supervisado. Secuencia de Entrenamiento y Validación. Overfitting. Validación Cruzada. Ejemplos.
- 3. Aprendizaje no supervisado . Ejemplos. Ley de Benford. Aplicación en detección de anomalías. Ejemplos
- 4. Métodos basados en Arboles: CART, comportamiento ante la secuencia de entrenamiento, Bagging. Random Forests
- 5. Métodos basados en núcleos. SVM. Derivación, Aplicaciones.
- 6 Modelos Aditivos. GAM. Algoritmos de selección de smoothers. Interpretación.
- 7. Boosting. Algoritmos alternativos.
- 8. Componentes Principales en contexto no lineal. Importancia de variables. Manifold Learning. Ejemplos.
- 9. Teoría de Vapnik-Chervonenkis. Cotas generales de error.
- 10. Aplicaciones específicas.

Bibliografía:

(título del libro-nombre del autor-editorial-ISBN-fecha de edición)

Aspirot L, Bertin K, Perera G. (2009) Asymptotic normality of the Nadaraya-Watson estimator for nonstationary functional data and applications to telecommunications. *Journal of Nonparametric Statistics*, 21:535–551.

Facultad de Ingeniería Comisión Académica de Posgrado

Crisci C, Ghattas B, Perera G (2011). A review of supervised machine learning algorithms and their applications to ecological data. *Ecological Modelling* 240: 113-122.

Hastie T., Tibshirani R and Friedman J (2011). *The Elements of Statistical Learning: Data Mining, Inference and Prediction.* (2nd edition, corrected 5th printing). Springer Series in Statistics. ISBN 978-0-387-84857-0.

Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR et al. (2003). Climate change, human impacts, and the resilience of coral reefs. *Science* 301: 929-933.

Izenman, AJ. (2008). *Modern Multivariate Statistical Techniques. Regression, Classification and Manifold Learning.* Springer Texts in Statistics. ISBN: 978-0-387-78188-4